extension | φ:Q→Out N | d | ρ | Label | ID |
(C22×S3)⋊D6 = C2×S3×S4 | φ: D6/C2 → S3 ⊆ Out C22×S3 | 18 | 6+ | (C2^2xS3):D6 | 288,1028 |
(C22×S3)⋊2D6 = D6⋊4D12 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3):2D6 | 288,570 |
(C22×S3)⋊3D6 = C62⋊4D4 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3):3D6 | 288,624 |
(C22×S3)⋊4D6 = C62⋊8D4 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 24 | | (C2^2xS3):4D6 | 288,629 |
(C22×S3)⋊5D6 = D12⋊24D6 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 48 | 4 | (C2^2xS3):5D6 | 288,955 |
(C22×S3)⋊6D6 = D12⋊12D6 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 48 | 8- | (C2^2xS3):6D6 | 288,961 |
(C22×S3)⋊7D6 = D12⋊13D6 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 24 | 8+ | (C2^2xS3):7D6 | 288,962 |
(C22×S3)⋊8D6 = C32⋊2+ 1+4 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 24 | 4 | (C2^2xS3):8D6 | 288,978 |
(C22×S3)⋊9D6 = C2×S3×D12 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3):9D6 | 288,951 |
(C22×S3)⋊10D6 = C2×D6⋊D6 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3):10D6 | 288,952 |
(C22×S3)⋊11D6 = S32×D4 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 24 | 8+ | (C2^2xS3):11D6 | 288,958 |
(C22×S3)⋊12D6 = C2×S3×C3⋊D4 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3):12D6 | 288,976 |
(C22×S3)⋊13D6 = C2×Dic3⋊D6 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 24 | | (C2^2xS3):13D6 | 288,977 |
(C22×S3)⋊14D6 = C22×D6⋊S3 | φ: D6/C6 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3):14D6 | 288,973 |
(C22×S3)⋊15D6 = C22×C3⋊D12 | φ: D6/C6 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3):15D6 | 288,974 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C22×S3).1D6 = Dic3.D12 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).1D6 | 288,500 |
(C22×S3).2D6 = C62.23C23 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).2D6 | 288,501 |
(C22×S3).3D6 = C62.24C23 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).3D6 | 288,502 |
(C22×S3).4D6 = C62.28C23 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).4D6 | 288,506 |
(C22×S3).5D6 = C62.29C23 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).5D6 | 288,507 |
(C22×S3).6D6 = C12.27D12 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).6D6 | 288,508 |
(C22×S3).7D6 = C62.31C23 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).7D6 | 288,509 |
(C22×S3).8D6 = C62.32C23 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).8D6 | 288,510 |
(C22×S3).9D6 = C62.33C23 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).9D6 | 288,511 |
(C22×S3).10D6 = C62.55C23 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).10D6 | 288,533 |
(C22×S3).11D6 = D6.9D12 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).11D6 | 288,539 |
(C22×S3).12D6 = D6⋊D12 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).12D6 | 288,554 |
(C22×S3).13D6 = C62.77C23 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).13D6 | 288,555 |
(C22×S3).14D6 = D6⋊2D12 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).14D6 | 288,556 |
(C22×S3).15D6 = Dic3⋊3D12 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).15D6 | 288,558 |
(C22×S3).16D6 = C12⋊D12 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).16D6 | 288,559 |
(C22×S3).17D6 = C62.82C23 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).17D6 | 288,560 |
(C22×S3).18D6 = C62.83C23 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).18D6 | 288,561 |
(C22×S3).19D6 = C62.84C23 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).19D6 | 288,562 |
(C22×S3).20D6 = C62.85C23 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).20D6 | 288,563 |
(C22×S3).21D6 = C12⋊2D12 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).21D6 | 288,564 |
(C22×S3).22D6 = C62.100C23 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).22D6 | 288,606 |
(C22×S3).23D6 = C62.101C23 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).23D6 | 288,607 |
(C22×S3).24D6 = C62.56D4 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).24D6 | 288,609 |
(C22×S3).25D6 = C62.57D4 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).25D6 | 288,610 |
(C22×S3).26D6 = C62⋊6D4 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).26D6 | 288,626 |
(C22×S3).27D6 = C62.121C23 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).27D6 | 288,627 |
(C22×S3).28D6 = C62⋊7D4 | φ: D6/C3 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).28D6 | 288,628 |
(C22×S3).29D6 = C62.47C23 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).29D6 | 288,525 |
(C22×S3).30D6 = C62.48C23 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).30D6 | 288,526 |
(C22×S3).31D6 = C62.49C23 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).31D6 | 288,527 |
(C22×S3).32D6 = Dic3⋊4D12 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).32D6 | 288,528 |
(C22×S3).33D6 = C62.51C23 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).33D6 | 288,529 |
(C22×S3).34D6 = C62.54C23 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).34D6 | 288,532 |
(C22×S3).35D6 = Dic3⋊D12 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).35D6 | 288,534 |
(C22×S3).36D6 = D6⋊1Dic6 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).36D6 | 288,535 |
(C22×S3).37D6 = D6.D12 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).37D6 | 288,538 |
(C22×S3).38D6 = Dic3×D12 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).38D6 | 288,540 |
(C22×S3).39D6 = D6⋊2Dic6 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).39D6 | 288,541 |
(C22×S3).40D6 = D6⋊3Dic6 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).40D6 | 288,544 |
(C22×S3).41D6 = D12⋊Dic3 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).41D6 | 288,546 |
(C22×S3).42D6 = D6⋊4Dic6 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).42D6 | 288,547 |
(C22×S3).43D6 = C62.72C23 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).43D6 | 288,550 |
(C22×S3).44D6 = S3×D6⋊C4 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).44D6 | 288,568 |
(C22×S3).45D6 = C62.91C23 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).45D6 | 288,569 |
(C22×S3).46D6 = D6⋊5D12 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).46D6 | 288,571 |
(C22×S3).47D6 = C62.111C23 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).47D6 | 288,617 |
(C22×S3).48D6 = C62.112C23 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).48D6 | 288,618 |
(C22×S3).49D6 = C62.113C23 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).49D6 | 288,619 |
(C22×S3).50D6 = Dic3×C3⋊D4 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).50D6 | 288,620 |
(C22×S3).51D6 = C62.115C23 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).51D6 | 288,621 |
(C22×S3).52D6 = C62.125C23 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).52D6 | 288,631 |
(C22×S3).53D6 = C2×D12⋊5S3 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).53D6 | 288,943 |
(C22×S3).54D6 = C2×D12⋊S3 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).54D6 | 288,944 |
(C22×S3).55D6 = S3×D4⋊2S3 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 48 | 8- | (C2^2xS3).55D6 | 288,959 |
(C22×S3).56D6 = C2×D6.3D6 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).56D6 | 288,970 |
(C22×S3).57D6 = C2×D6.4D6 | φ: D6/S3 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).57D6 | 288,971 |
(C22×S3).58D6 = C62.11C23 | φ: D6/C6 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).58D6 | 288,489 |
(C22×S3).59D6 = C62.20C23 | φ: D6/C6 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).59D6 | 288,498 |
(C22×S3).60D6 = D6⋊Dic6 | φ: D6/C6 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).60D6 | 288,499 |
(C22×S3).61D6 = C62.25C23 | φ: D6/C6 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).61D6 | 288,503 |
(C22×S3).62D6 = D6⋊6Dic6 | φ: D6/C6 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).62D6 | 288,504 |
(C22×S3).63D6 = D6⋊7Dic6 | φ: D6/C6 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).63D6 | 288,505 |
(C22×S3).64D6 = C4×D6⋊S3 | φ: D6/C6 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).64D6 | 288,549 |
(C22×S3).65D6 = C4×C3⋊D12 | φ: D6/C6 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).65D6 | 288,551 |
(C22×S3).66D6 = C62.74C23 | φ: D6/C6 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).66D6 | 288,552 |
(C22×S3).67D6 = C62.75C23 | φ: D6/C6 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).67D6 | 288,553 |
(C22×S3).68D6 = C12⋊7D12 | φ: D6/C6 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).68D6 | 288,557 |
(C22×S3).69D6 = C2×D6⋊Dic3 | φ: D6/C6 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).69D6 | 288,608 |
(C22×S3).70D6 = C62⋊5D4 | φ: D6/C6 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).70D6 | 288,625 |
(C22×S3).71D6 = C2×D6.D6 | φ: D6/C6 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).71D6 | 288,948 |
(C22×S3).72D6 = C2×D6.6D6 | φ: D6/C6 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).72D6 | 288,949 |
(C22×S3).73D6 = S3×C4○D12 | φ: D6/C6 → C2 ⊆ Out C22×S3 | 48 | 4 | (C2^2xS3).73D6 | 288,953 |
(C22×S3).74D6 = C4×S3×Dic3 | φ: trivial image | 96 | | (C2^2xS3).74D6 | 288,523 |
(C22×S3).75D6 = S3×Dic3⋊C4 | φ: trivial image | 96 | | (C2^2xS3).75D6 | 288,524 |
(C22×S3).76D6 = S3×C4⋊Dic3 | φ: trivial image | 96 | | (C2^2xS3).76D6 | 288,537 |
(C22×S3).77D6 = S3×C6.D4 | φ: trivial image | 48 | | (C2^2xS3).77D6 | 288,616 |
(C22×S3).78D6 = C2×S3×Dic6 | φ: trivial image | 96 | | (C2^2xS3).78D6 | 288,942 |
(C22×S3).79D6 = S32×C2×C4 | φ: trivial image | 48 | | (C2^2xS3).79D6 | 288,950 |
(C22×S3).80D6 = C22×S3×Dic3 | φ: trivial image | 96 | | (C2^2xS3).80D6 | 288,969 |